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ABSTRACT 

 In systems that achieve laser beam propagation through atmospheric turbulence by 
phase compensation with adaptive optics, the performance depends on the beacon’s spatial 
distribution. A formulation is obtained to calculate the anisoplanatic Strehl ratio of a phase 
compensated, focused beam for any beacon distribution and turbulence profile.  Analytic 
results are obtained for several beacon geometries corresponding to practical systems, in 
the large aperture limit.  The effects of finite aperture are evaluated for two representative 
beacon geometries, using both uniform and highly localized turbulence profiles. The 
spread of the beacon distribution is found to be much less deleterious than the offset of the 
beacon centroid from the aimpoint. The anisoplanatic effect is qualitatively different in 
systems characterized by a focused beam geometry and systems where the collimated 
beam geometry applies. 

 

INTRODUCTION 

 Index of refraction fluctuations associated with atmospheric turbulence can catastrophically 
degrade the propagation of an image or a laser beam through the atmosphere. In many systems of 
interest, much of this degradation can be compensated by the use of an adaptive optics system 
that corrects the optical phase profile of the outgoing laser beam to cancel the effect of the 
turbulence. The adaptive optics system obtains the required phase correction by detecting a 
beacon signal, which is generated in such a place that it traverses the same regions as the light 
being compensated.  Practically, however, there will be some error in the phase correction, 
because the beacon light does not travel the exact path of the light being compensated.  This 
error, due to partially correlated differences in the refraction index perturbations sampled by the 
beacon and the beam, produces what are known as anisoplanatic effects, which reduce the 
performance of the adaptive optics system from ideal. 
 The many applications for adaptive optics compensation can be categorized by geometry, 
and each geometry has an associated set of anisoplanatic problems.  For terrestrial based imaging 
of astronomical objects, effective beacons can be provided by a bright star1, an artificial laser 
star2, or Rayleigh backscatter3. For imaging of (or laser propagation to) an orbiting object, a 
beacon can also be provided by light generated on or reflected from the object, or a co-orbiting 
object4.  For imaging of or laser propagation to a relatively slow moving object such as an 
airplane or theater missile, a lead ahead beacon can be provided by reflecting light from a target 
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region ahead of the aimpoint, such that the aimpoint moves to the beacon region in the time 
needed for light to make a round trip. 
 In geometries where an aperture is focused on some object and a point source beacon is 
located at the same focal distance, a major source of anisoplanatic degradation is angular 
displacement (the difference in directions between the beacon and the imaging or aim point). This 
anisoplanatic degradation was characterized by Fried5 and by Sasiela6.  Yura7 and Sasiela8 also 
obtained formulations for the focal plane intensity profile obtainable with an adaptive optics 
system using an offset point beacon located at the focal distance. This geometry applies to a 
bright star beacon for astronomical imaging, and to an orbiting object that is used to reflect a 
beacon for itself (the angular offset in this case is the roughly 50 microradians that a low earth 
orbit satellite subtends in the light round-trip time.) 
 In geometries where an aperture is focused to an infinite focal length and a point source 
beacon is in the same direction that the aperture is pointing, but at a finite distance, a major 
anisoplanatic effect comes from the difference between the collimated beam and the spherical 
wave beacon. The nature of this so called focus anisoplanatism has been analyzed and 
characterized for several turbulence models and beacon altitudes, by Tyler9, Fried & Belsher10, 
and Welsh & Gardner11. This geometry describes an on-axis laser generated point beacon for 
astronomical imaging. 
 In geometries where an aperture is focused at some arbitrary distance, and a point beacon 
source is located at a different distance and in a slightly different direction, there is a combination 
of angular and focal anisoplanatism.  Formulations for the beam degradation to be expected in 
this case have been developed by Tyler12 and by Stone et.al.13 and applied in the limit of an 
infinite focal length. This geometry describes an off-axis laser generated point beacon for 
astronomical imaging.  Sasiela8,14 developed a formulation for finding the anisoplanatic effect 
with a distributed beacon, and characterized the case of a uniform circular beacon source with a 
collimated beam. 
 In this paper, a formulation is developed for the geometry where an aperture is focused on 
some object at finite distance, and a beacon is located at the same focal distance, but the beacon is 
distributed about some centroid, and this centroid is offset from the aimpoint.  An anisoplanatic 
effect arises from the finite size of the beacon, and the offset of the beacon centroid from the 
aimpoint.  This geometry applies, for example, when an illuminator laser is used to generate the 
beacon by lighting up part of the object of interest. The beacon will have some distribution in the 
target plane, determined by the diffraction of the illuminator laser, the steering, scattering and 
scintillation of the illuminator light by the atmosphere, the illuminator pointing error, and the 
motion, shape, size and reflectivity of the target.  This analysis characterizes the anisoplanatic 
effect when an offset distributed beacon is used to compensate a focused beam. The effect is 
examined for various beacon distributions. In addition, the dependence on the aperture size and 
on the turbulence profile is examined. 
 

FORMULATION OF ANISOPLANATIC STREHL RATIO  

 The geometry for a focused beam using a distributed beacon is shown in Fig. 1.  The z axis 
has its origin at the center of the aperture, and points to the aimpoint.  The telescope aperture 
radius is R (diameter is D), and the focal length is L.  A point in space is specified by a 2D radial 
vector, 

  

 
 , and its distance along the optical axis, z.  The instantaneous index of refraction 

perturbation  due to turbulence, at a position (
  

 
 , z) is written n[

  

 
 , z].  For any point on the 

aperture, the residual phase error is the phase perturbation due to turbulence for propagation from 
that aperture point to the aimpoint, minus the phase correction applied at that aperture point. The 
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phase perturbation due to turbulence for propagation from aperture point  A at position (
  

 
 A , 0)  to 

the aimpoint, is obtained from the perturbation in the optical path length15 between the two 
points: 
 

 
  

A,beam = k0 dz
0

L

n ˆ  
 
 A, z[ ]  (1) 

 
where  ko = 2 /  is the wavenumber of the light, z / L  and ˆ  1 z / L .  This formulation 
does not treat amplitude perturbations or diffraction. 
 The phase correction applied at any aperture point is determined by the average over the 
distributed beacon, of the phase perturbations sensed in the incoming beacon light. This assumes 
that the distributed beacon is an incoherent light source.  A radial position in the target plane is 

represented by   
 

b , and the normalized strength of the distributed beacon at radial position   
 

b  is 

written B(  
 

b ), where the integral of B(  
 

b ) over all   
 

b  is unity. The phase correction that is applied 
at aperture position 

  

 
 A  is  

 

 
  

A,beacon = k0 d2
 

b B(
 

b ) dz
0

L

n ˆ  
 
 A +

 

b ,z[ ]  (2) 

 
The residual phase error at aperture point A is thus 
 

 
  

A = k0 d2
 

b B(
 

b ) dz n ˆ  
 
 A,z[ ] n ˆ  

 
 A +

 

b ,z[ ]( )
0

L

 (3) 

 
Additional degradation caused by imperfect application of the sensed phase correction is not 
treated here. The beacon is presumably strong enough that statistical sampling noise is negligible. 
 The impact of the anisoplanatic error can be characterized by a reduction in deliverable 
aimpoint intensity from that obtainable in the absence of turbulence.  This ratio of intensities with 
and without the anisoplanatic effect, known as the Strehl ratio, S, can be obtained from the 
residual phase errors with16 
 

 S =
A B

exp 1
2 A B( )

2( )  (4) 

 

where 

  

•
A

1 R2( ) d2
 
 A •

aperture

 is a shorthand notation for an aperture average. The angle 

brackets denote an ensemble average over different realizations of the refractive index 
fluctuations. The mutual coherence function of the residual aperture phase, defined as 

  
M(

 
 A,

 
 B ) exp 1

2 A B( )
2( ) , is used here only to obtain a Strehl ratio, but it can be used 

to obtain other measures of the performance of an optical compensation system17,18.   When the 
Strehl ratio is over about 30%, the aperture averaging can be moved15 inside the exponential to 

get an approximation to the Strehl ratio: S exp 1
2

A A B( )
2

B
( ) .  The structure function 

of the residual aperture phase, 
  
D(

 
 A,

 
 B) A B( )

2
 has also been used extensively in the 

literature in analyses of the performance of optical systems.  A quantity called the effective phase 
variance, defined as 
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  ,eff
2 1

2
A A B( )

2

B
 (5) 

 
can be used as a measure of the anisoplanatic effect19.  In terms of this effective phase variance, 

the Strehl ratio is approximately S = exp ,eff
2( ) .  

 The variance of the residual phase error at aperture position 
  

 
 A  is ,A

2
A
2 .  The 

aperture average of the variance of the residual phase error, ,
2

A
2

A
, is also known as the 

mean square wave-front distortion12. The Zernike piston component of any aperture function is 
its aperture average20, so  the aperture averaged variance of the residual phase error with its 

piston component removed is ,eff
2

A BB
( )

2

A
, which is exactly equivalent to the 

effective phase variance as defined in Eq. (5).  A third completely equivalent expression for the 

effective phase variance is ,eff
2

A
2

A A A BB
, where the first term is the mean 

square wave-front distortion, and the second term removes the piston component. 
 To find the effective phase variance, the residual phase errors at aperture points A and B 
from Eq. (3) are substituted into Eq. (5), giving 
 

  

,eff
2 1

2
A

k0 d2
 

b B(
 

b ) dz n ˆ  
 
 A, z[ ] n ˆ  

 
 A +

 

b ,z[ ] n ˆ  
 
 B,z[ ] + n ˆ  

 
 B +

 

b , z[ ]( )
0

L

( )
2

B

 
After the square is performed, the effective phase variance is the sum of 16 terms, each having 

the form 
  

1
2 ko

2

A
d2

 

b B(
 

b ) d2
 

 b B(
 

 b ) dz
0

L

d  z 
0

L

n
 

r 1(z;
 

b ), z[ ]n
 

r 2(  z ;
 

 b ),  z [ ]
B

, 

where 
  

 
r 1  represents the radial position along either the beam or beacon ray from either point A or 

B in the aperture, and 
  

 
r 2  represents any of these four in the primed set used to perform the 

square.  Because of the interchangability of the A and B aperture averages, and the primed and 
unprimed integrations, the sixteen terms can be combined into six terms, of which three are 
simplified cases of the other three:   
 

  

,eff
2

= ko
2

A
d2

 

b B(
 

b ) d2
 

 b B(
 

 b ) dz
0

L

d  z 
0

L

n ˆ  
 
 A, z[ ]n ˆ   

 
 A,  z [ ]

n ˆ  
 
 A,z[ ]n ˆ   

 
 B,  z [ ]

2n ˆ  
 
 A +

 

b ,z[ ]n ˆ   
 
 A,  z [ ]

+2n ˆ  
 
 A +

 

b ,z[ ]n ˆ   
 
 B,  z [ ]

+n ˆ  
 
 A +

 

b , z[ ]n ˆ   
 
 A +   

 

 b ,  z [ ]
n ˆ  

 
 A +

 

b , z[ ]n ˆ   
 
 A +   

 

 b ,  z [ ]

B
(6) 

 
 The correlation function for the refractive index fluctuations at two positions was given by 
Tatarski21 as an integral over the Kolmogorov turbulence spectrum 
 

 

  

n
 

r 1(z), z[ ] n
 

r 2 (  z ),  z [ ] = 0.2073Cn
2 (z) d2

 

k dkz

exp i
 

k 
 

r 1 (z)
 

r 2(  z )( ) + ikz (z  z )( )
 

k 2 + kz
2( )
11/6  (7) 
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The turbulence strength is characterized by Cn

2 (z), the Kolmogorov turbulence structure 

coefficient. The turbulence fluctuations have been expanded into Fourier components, where kz 

represents the component in the z direction, and   
 

k  represents the 2D components transverse to 
the z direction.  A handy gimmick for performing two of the integrations (over z’ and kz) can be 

obtained with the Fourier transform23 dx dk f (k)exp(ikx ) = 2 f (k) (k)   (noting that 

practically all the contribution from the z’ integral comes in the region near z, and using the 
symmetry of the correlation function): 
 

 
  

d  z n
 

r 1(z), z[ ] n
 

r 2 (  z ),  z [ ] = 0.2073Cn
2 (z)

d2
 

k 

k11/ 3
cos

 

k 
 

r 1(z)
 

r 2 (z)( )( )  (8) 

 
 Applying Eqs. (7) and (8) in Eq. (6), and rearranging with trig identities gives the effective 
phase variance to be 
 

  
,eff

2
= 0.2073ko

2 L d Cn
2 ( L)

0

1 d2
 

k 

k11/3 1 cos(
 

k (
 
 A

 
 B ) ˆ  )

BA[ ] 1 d2
 

b B(
 

b ) exp(i
 

k 
 

b )
2

(9) 
The effect of the beacon anisoplanatism can be separated into a filter function 
 

 

  

F(
 

k , ) = 1 d2
 

b B(
 

b )exp(i
 

k 
 

b )
2

= d2
 

b B(
 

b ) 1 cos(
 

k 
 

b )( )[ ]
2
+ d2

 

b B(
 

b )sin(
 

k 
 

b )[ ]
2  (10) 

 
and the aperture averages can be performed to give 
 

  
  

,eff
2

= 0.2073ko
2 L d Cn

2 ( L)
0

1

d2
 

k k 11/3 1 1
2 (kR ˆ  )[ ]F(

 

k , )  (11) 

 
where  1(x) 2J1 (x) / x  is the Jahnke notation22 for  twice the first Bessel function divided by 
its argument. 
 Sasiela14 obtained a formulation for the aperture average of the residual phase variance 
with some or none of the Zernike modes removed.  His formulation has greater scope than Eq. (6) 
in that it includes diffraction, treats alternative geometries implicitly, and provides for removal of 
tilt as well as piston Zernike modes.  He evaluated the case of a collimated beam and a distributed 
beacon at a finite distance, neglecting diffraction, and the effective phase variance for that case, 
obtained by combining Eqs. (10,19, 26 and 27) of his paper can be written 
 

  

,eff
2

= 0.2073ko
2 L d Cn

2 ( L)
0

1

d2
 

k k 11/3 A
1 exp( i

 

k 
 
 A ) d2

 

b B(
 

b )exp(i
 

k 
 

b )
2

1(kR) 1(kR ˆ  ) d2
 

b B(
 

b ) exp(i
 

k 
 

b )
2

 

 

 

 

 

 

 

 

 

 
In the collimated geometry, the aperture averaging can not be untangled from the beacon 
distribution averaging, as it can in the focused beam geometry.  For a focused beam, a careful 
application of Sasiela’s formulation14 can lead to Eqs. (10) and (11).  
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 If no phase correction was applied to the beam, the resulting filter function would be  

F(k)=1. Using this filter, and the integral dx x 8/ 3(1 1
2 (x)) = 1.06498

0
, the effective phase 

variance obtained from Eq. (11) matches Fried’s well-known result5, giving 

,eff
2

= 1.033(D / r0)
5/ 3

, where r0  is the atmospheric coherence length for the path from 0 to L, 

defined by ro
5/ 3

= 0.4235ko
2 dzCn

2 (z)
0

L
ˆ  5/ 3

. 

 

WAVE-FRONT DISTORTION WITH DISTRIBUTED BEACONS 

 As pointed out by Sasiela14, in many cases of interest the mean square wave-front 
distortion (which includes the piston Zernike mode) provides a good approximation to the 
effective phase variance.  The mean square wave-front distortion, obtained by a derivation 
analogous to that leading to Eq. (11), is found to be 
 

 
  

,
2

= 0.2073ko
2L d Cn

2 ( L)
0

1

d2
 

k k 11/3F(
 

k , )  (12) 

 
In the limit of large aperture, the piston component of the residual phase will tend to zero. The 
mean square wave-front distortion of Eq. (12) can therefore be interpreted as the effective phase 
variance in the large aperture limit. Even though Eq. (12) gives a smaller Strehl ratio than a finite 
aperture would really have, it can be used for a first comparison of anisoplanatic effects for 
various beacon geometries. 
 
Offset Point Beacon 
 For a point beacon source, displaced from the aimpoint by bo,  the beacon distribution, in 

terms of the Dirac delta function, is B(b)= (b - bo).  When this beacon distribution is substituted 

into Eq. (10), the integration over   
 

b  is trivial, and the filter function is easily found to be 
 

 
  
F(

 

k , ) = 2 1 cos(
 

k 
 

b o )( )  (13) 

 

Using this filter, and the integral dx x 8/ 3 2(1 J0 (x)) = 2.236660
, the phase variance 

obtained from Eq.(12) matches Fried’s standard result1 
 

 , ,Po int
2

= (b0 / L 0 )
5/ 3

 (14) 

 

where o is the isoplanatic patch angle1, defined by o
5/ 3

= 2.914ko
2 dzCn

2 (z)
0

L

z5 /3 . 

 
On-axis uniform circular beacon 
 For a uniform circular beacon source distribution, of radius Rb, centered at the aimpoint, 

the filter function from Eq. (10) is found to be22  
 

 
  
F(

 

k , ) = 1 1 (kRb )[ ]
2
 (15) 
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Using this filter, and the integral dx x 8/ 3(1 1(x))
2
= 0.155019

0
, the phase variance 

obtained from Eq.(12) is 
 
 , ,Circle

2
= (0.2016Rb / L 0 )

5/ 3
 (16) 

 
The phase variance from a circular beacon of radius Rb will thus be equivalent to the phase 
variance that would be obtained by a point beacon offset from the aimpoint by 0.2016 Rb. The 
path integral over the weighted turbulence profile is collected into the same isoplanatic patch 
factor as in the offset point case. 
 For an on-axis uniform circular beacon, in collimated beam geometry, Sasiela14 obtained 

  
F(

 

k , ) =1 2 1(kRb ) 1(kR ) + 1
2 (kRb )  as the filter function  for finding the mean 

square wave-front distortion.  In the limit that the beacon radius is much greater than the aperture 
radius, the phase variance obtained with this collimated geometry filter is identical to that given 
by  Eq. (16) for the focused beam geometry (the kR  argument of the second term can be replaced 
by 0 for the integrations of Eq. (12) in this limit). However, for the small beacon radius limit, the 
results are qualitatively different. An on-axis point beacon gives no anisoplanatic error in the 
focused beam geometry, but in the collimated geometry, there is a “focal” anisoplanatic effect 
due to the mismatch between the conical shaped beacon and the cylindrical shaped beam. 
 
Offset uniform circular beacon 
 For an offset uniform circular beacon of radius Rb, offset from the aimpoint by a 
displacement d, the filter function is found to be 
 

 
  
F(

 

k , ) =1 2 1(kRb )cos(
 

k 
 

d ) + 1
2 (kRb )  (17) 

 
Using this filter, the phase variance obtained from Eq.(10) is 
 
 , ,OffsetCircle

2
= (0.2016Rb / L 0 )

5/ 3K(d / Rb )  (18) 

 
where K(e) is an auxiliary function defined in this geometry by 
 

 K(e) = 6.45082 dx x 8/ 3(1 2J0(x e) 1(x) + 1
2 (x))2

0
 (19) 

 
For a beacon of radius Rb, K(d/Rb) is the ratio of the phase variance with a beacon offset of d, to 
the phase variance with zero offset. For small values of d/Rb, K has an asymptotic value of unity. 

For large values of d/Rb, K=(0.2016d/Rb)-5/3, which with Eq.(18) gives the same phase variance 
as an offset point beacon. A numerical evaluation of this phase variance multiplier due to beacon 
offset is shown in Fig. 2. 
 For an offset uniform circular beacon, in collimated beam geometry, Sasiela14 obtained 

  
F(

 

k , ) =1 2 1(kRb ) 1(kR )J0 (
 

k 
 

d ) + 1
2 (kRb )  as the filter function  for finding the 

phase variance including piston.   
 If the offset to the center of a uniform circular beacon is fixed, the phase variance can be 
treated as a function of the beacon radius. The anisoplanatic phase variance is then found to be 
minimized when the beacon radius is 1.59 times the offset, in which case, the phase variance is 
reduced by a factor of 0.8527 from the value obtained with a point beacon at an offset of d. 
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 Other beacon source distributions 
 For a Gaussian circular beacon source distribution given by a standard 2D Gaussian 

distribution 
  
B(

 

b ) = (2 2 ) 1 exp b2 (2 2 )( ) , the filter function of Eq. (10) is found to be23 

  
F(

 

k , ) = 1 exp( 2k 2 2 / 2)( )
2

.  Using this filter, and the integral 

dx x 8/ 3(1 exp( x2 / 2))2 = 0.408984
0

, the phase variance obtained from Eq.(7) is 
2
= (0.3611 / L 0 )

5/ 3 .  In this limit of large aperture, the anisoplanatic phase variance from 

a Gaussian circular beacon of rms radius  will thus be equivalent to the phase variance that 
would be obtained by a point beacon with an offset of 0.3611 . 
 In a two point straddle beacon geometry, the beacon is composed of two point sources 
which straddle the aimpoint.  The two points are located at positions bo and -bo, in the target 

plane.  The filter function is found to be 
  
F(

 

k ) = 1 cos(
 

k 
 

b oz / L)( )
2

. Using this filter, and the 

integral dx x 8/ 3(2(1 J0 (x)) (1 J0 (2x)) / 2)
2
= 0.4617

0
, the phase variance obtained 

from Eq.(7) is 2
= (0.388 b0 / L 0 )

5 /3
. 

 
 In a circular ring beacon geometry, centered on the aimpoint, where the radius of the ring is 

bo, the filter function is given by 
  
F(

 

k , ) = 1 J0 (kbo )( )2 , and the resulting phase variance, 

including piston, is , ,Ring
2

= (0.3201b0 / L 0 )
5/ 3

. 

 For the geometry where the beacon source distribution is a uniform centered line segment 
with half length bo in the target plane, centered at the aimpoint, the filter function is 

  
F(

 

k , ) = 1 sin(
 

k 
 

b o ) / (
 

k 
 

b o )( )
2

 and the resulting phase variance, including piston, is 

found to be , ,Line
2

= (0.1663 b0 / L 0 )
5 /3

. 

 

EFFECTIVE PHASE VARIANCE WITH DISTRIBUTED BEACONS 

 The effective phase variance, for an arbitrary aperture size, can be found by putting the 
various anisoplanatic filters into Eq. (11).  The effective phase variance will depend on the 
turbulence profile in a more complicated way than can be incorporated into the isoplanatic patch 
angle. The effective phase variance can be cast as the product of the mean square wave-front 
distortion (which includes piston) and a variance reduction factor that removes the piston: 
 
 ,eff

2
= ,

2 vrf  (20) 

 
The variance reduction factor is obtained by dividing the effective phase variance of Eq. (11) by 
the phase variance of Eq. (12). For beacons that can be characterized by one size parameter, say 
d, the variance reduction factor can be written in terms of an auxiliary function, K(e), called the 
non-piston fraction, that depends on the beacon geometry:   
 

 vrf = d 5/ 3Cn
2 ( L)

0

1

K R ˆ  / ( d)( ) d 5/ 3Cn
2 ( L)

0

1

 (21) 
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The turbulence is assumed to be isotropic.  For the offset point beacon geometry, the non-piston 
fraction is given by 
 

 KOP(e) = 0. 4471 dμ
0

μ
8/ 3 1 1

2 (μ e)[ ] 2(1 J0 (μ))  (22) 

 
and the beacon size parameter d in Eq. (21) is the beacon offset, bo. A numerical evaluation of 
the offset point beacon non-piston fraction is shown in Fig. 3. The numerical integration of Eq. 
(22) is performed with the following techniques. For very small values of μ, the integrand is 
expanded into a power series (up to eighth order in μ), and the terms are integrated separately and 
added. The Bessel function terms are divided into two pieces. The first piece extends over about 
five oscillations, where the Bessel function itself is used. The second piece extends from the end 
of the first piece to infinity, and applies an exponential damping to the Bessel function 
oscillations. The integral can be truncated at some value of μ because of the inverse weighting in 
the integrand. For a given value of e, the quadrature is successively reduced until further 
improvement is sufficiently small (five significant figures). The upper limit of the integration is 
also extended until further contributions are negligible. 
 For an on-axis uniform circular beacon, the non-piston fraction is found to be 
 

 KUC(e) = 6. 4508 dμμ 8 /3 1 1
2 (μ e)[ ] (1 1(μ))  (23) 

 
and the beacon size parameter d in Eq. (21) is the beacon radius, Rb.  The non-piston fraction for 
the uniform circular beacon is also shown in Fig. 3. 
 To find the anisoplanatic phase variance in a particular application, the appropriate non-
piston fraction and the expected turbulence profile are used to obtain the variance reduction 
factor.  This will generally require numerical integration with a given specific turbulence profile.  
The dependence on the turbulence profile will be assessed by treating two extreme idealized 
profiles: uniform along the path, and highly localized turbulence. 
 For a uniform turbulence profile, the variance reduction factor of Eq. (21) simplifies to 
 

 vrf uniform =
8

3
d 5/ 3

0

1

K
R ˆ  

d

 

 

  

 
 (24) 

 
A normalized aperture diameter can be defined in terms of the atmospheric coherence length and 
the mean square wave-front distortion 
 

 ˆ D =
D

r0 ( ,
2 )3/ 5  (25) 

 

or in terms of the isoplanatic patch and beacon size ˆ D OP =
D

r0

L 0

b0

 and ˆ D UC =
D

r0

L 0

0.2016b0

. 

For the uniform turbulence profile, the atmospheric coherence length and the isoplanatic angle are 
related by L 0 / r0 = 0.3144 .  The finite aperture variance reduction factors for a uniform 
turbulence profile can then be expressed as functions of the normalized aperture diameter: 
 

 
vrf uniform

OP
= 8

3 d 5/ 3

0

1

KOP (1.590 ˆ D (1 ) / )
 (26) 
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vrf uniform

UC
= 8

3 d 5/ 3

0

1

KUC(0.3206 ˆ D (1 ) / )
 

 
These variance reduction factors are shown in Fig. 4.   
 The Dirac turbulence profile,  i.e. Cn

2 ( L) = ( 0 ) Cno
2  , can be used to characterize 

the variance reduction for cases where the turbulence is highly localized. This corresponds to a 
region of turbulence located at a distance oL from the aperture, spread over a distance , and 

having strength Cno
2  . In this case, the variance reduction factor of Eq. (21) simplifies to 

 

 vrf Dirac =K
R ˆ  0
d 0

 

 

 
 

 

  (27) 

 
Any ratio of coherence length to isoplanatic patch can be approximated, depending on the 
location of the turbulence in the path: L 0 / r0 = 0.3144(1 0 ) / 0 .  The variance reduction 
factors for the Dirac profile with the offset point and the uniform circular beacons are then 
 

 vrf Dirac
OP

=K OP(1.590 ˆ D OP )  (28) 

 vrf Dirac
UC

=KUC(0.3206 ˆ D UC)  
 
These finite aperture variance reduction factors for localized turbulence profiles are shown in Fig. 
5. 
 When the normalized aperture is large, the asymptotic variance reduction factor is unity. 
However, the large aperture asymptotic value is reached at a smaller normalized aperture for the 
uniform circular beacon than for the offset point beacon. This indicates that the residual phase 
variance with the uniform circular beacon has a much smaller contribution from low order modes 
(in particular, piston) than does the offset point beacon.  
 In the small normalized aperture limit, regardless of the turbulence profile, asymptotic 
behavior of the variance reduction factors is found to be 
 

 
lim

ˆ D OP 0 vrf OP
=2.066 ˆ D OP

5/ 3  

   

 
lim

ˆ D UC 0vrf UC
=1.033 ˆ D UC

5/ 3 (29) 

 
These asymptotic values combine with Eq. (20) to give the phase variance when the beacon size 
(normalized to the isoplanatic patch) is large relative to the aperture (normalized to the coherence 
length). For the offset point beacon, the phase variance in this limit is exactly twice the phase 
variance for uncompensated turbulence.  When the offset is sufficiently large, the phase error 
sensed by the beacon is uncorrelated to the required phase correction of the outgoing beam, so 
that the total variance is the sum of the beacon and outgoing beam variances, i.e. twice the 
uncompensated result. For the uniform circular beacon in this limit, the phase variance 
approaches the uncompensated value, rather than twice the uncompensated value, because for a 
large uniform beacon, the sampled phase variance will average to zero. 
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SUMMARY 

 A methodology has been laid out by which the anisoplanatic effects of distributed beacon 
sources can be evaluated for focused beam geometries.  Its application is in determining the 
performance limitations of an adaptive optics wavefront compensation system, where the 
wavefront sensor uses the return from an illuminated target.  For any beacon source intensity 
distribution, Eq. (10)  is used to find the appropriate anisoplanatic filter.  This filter is then used 
as a weighting function for the integration over the turbulence spectrum.  Eq. (11) then gives the 
integral that must be performed over the turbulence profile to obtain the residual anisoplanatic 
phase variance.  This phase variance is then used to obtain the Strehl ratio for the compensated 
beam.  A number of practical beacon distributions have been treated analytically, and two 
extreme turbulence profiles have been employed, to illuminate trends.   
 The key result is that the spread of the beacon distribution has much less deleterious effect 
than the offset of the beacon centroid from the aimpoint.  It was also seen that some anisoplanatic 
effects with collimated beam geometry  are qualitatively different from those in a focused beam 
geometry. 
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Fig. 1.  The geometry and nomenclature for treating a focused beam and a distributed beacon. 
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Fig. 2.  The anisoplanatic phase variance multiplier, that accounts for the mean square wave-front 
distortion increase due to offset of the centroid by  a distance d from the aimpoint, of a uniform 
circular beacon of radius b. 
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Fig. 3. The non-piston fraction, as a function of the ratio of the projected beacon offset to the 
projected beacon radius. 
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Fig. 4.  The variance reduction factor due to finite aperture for a uniform turbulence profile.  The 
aperture is normalized with the atmospheric coherence length and the mean square wave-front 
distortion. 
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Fig. 5.  The variance reduction factor due to finite aperture for a highly localized turbulence 
profile.  The aperture is normalized with the atmospheric coherence length and the mean square 
wave-front distortion. 

 
 


